EconPapers    
Economics at your fingertips  
 

Contrastive machine learning reveals in EEG resting-state network salient features specific to autism spectrum disorder

Muhammad Salman Kabir, Semen Kurkin, Galina Portnova, Olga Martynova, Zhen Wang and Alexander Hramov

Chaos, Solitons & Fractals, 2024, vol. 185, issue C

Abstract: We explore the potential of the contrastive variational autoencoder to detect latent disorder-specific patterns in the network, analyzing functional brain networks in autistic individuals as the case. Autism spectrum disorder has long troubled medical practitioners, neurologists, and researchers. It is due to its extremely variable nature, both neurologically and behaviorally. Though machine learning has been in use to automate autism diagnosis, little has been done to delve into its intricacies. Here, we attempt to understand the neural mechanisms of autism spectrum disorder using contrastive variational autoencoder in conjunction with feature engineering. Our proposed methodology results in a physiologically interpretable classifier with a remarkable F1-score (up to 95%) and reveals a weak frontal lobe functional connectivity in the alpha band for children with autism spectrum disorder. Our study suggests an increased focus on efficient frontal lobe EEG sampling. Additionally, it highlights the importance of the proposed pipeline for understanding the underlying neural abnormalities in autism over the traditional machine learning pipeline. Thus, the obtained results have proven a contrastive variational autoencoder to be a promising approach for discovering latent patterns and features in complex networks.

Keywords: Autism spectrum disorder; Contrastive machine learning; Electroencephalography; Brain functional network; Resting state (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924006751
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924006751

DOI: 10.1016/j.chaos.2024.115123

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924006751