Spatiotemporal nonlinear dynamics and chaos in a mechanical Duffing-type system
Eduardo V.M. Reis and
Marcelo A. Savi
Chaos, Solitons & Fractals, 2024, vol. 185, issue C
Abstract:
This paper investigates spatiotemporal nonlinear dynamics and chaos in a dissipative mechanical Duffing-type system subjected to external stimulus. A nonlinear wave equation with cubic nonlinearity governs the system dynamics. A perturbation description is employed to build mathematical tools that represent different aspects of system dynamics, from local to global behaviors. Lyapunov exponents are defined from the different perturbations allowing the evaluation of local, convective and mean exponents. Different dynamical regimes are investigated considering homogeneous and heterogeneous spatial stimuli. Distinct dynamical responses are observed including periodic, quasi-periodic and chaotic behaviors. A novel concept of chaotic wave is employed to explain the spatial transport of chaos through the media considering heterogeneous conditions. Chaotic wave velocity is measured by the convective Lyapunov exponents.
Keywords: Spatiotemporal chaos; Chaos; Duffing system; Nonlinear dynamics; Vibrations; Perturbations; Lyapunov exponents; Chaotic wave (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792400729X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:185:y:2024:i:c:s096007792400729x
DOI: 10.1016/j.chaos.2024.115177
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().