EconPapers    
Economics at your fingertips  
 

Solitons in higher-order topological insulator created by unit cell twisting

Yaroslav V. Kartashov

Chaos, Solitons & Fractals, 2024, vol. 185, issue C

Abstract: We show that higher-order topological insulators can be created from usual square structure by twisting waveguides in each unit cell around the axis passing through the center of the unit cell, even without changing intracell distance between waveguides. When applied to usual square array, this approach produces two-dimensional generalization of Su-Schrieffer-Heeger (SSH) structure supporting topological corner modes with propagation constants belonging to two forbidden spectral gaps opening only for twist angles from certain interval. In contrast to usual SSH arrays, where higher-order topology is typically introduced by diagonal waveguide shifts and only one type of corner states exists, our SSH-like structure in topological phase supports two co-existing types of in-phase and out-of-phase corner modes appearing in two different topological gaps that open in the spectrum. Therefore, twisting of the unit cell qualitatively changes topological properties of the system, offering a new degree of freedom in creation of higher-order topological phases. In material with focusing cubic nonlinearity two coexisting types of topological corner solitons emerge from these modes, whose existence and stability properties are studied here. Despite different internal structure, both such modes can be simultaneously dynamically stable in the appreciable part of the topological gap.

Keywords: Su–Schrieffer–Heeger array; Higher-order topological insulators; Corner states; Topological solitons (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924007409
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924007409

DOI: 10.1016/j.chaos.2024.115188

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924007409