EconPapers    
Economics at your fingertips  
 

Generalized periodicity and applications to logistic growth

Martin Bohner, Jaqueline Mesquita and Sabrina Streipert

Chaos, Solitons & Fractals, 2024, vol. 186, issue C

Abstract: Classically, a continuous function f:R→R is periodic if there exists an ω>0 such that f(t+ω)=f(t) for all t∈R. The extension of this precise definition to functions f:Z→R is straightforward. However, in the so-called quantum case, where f:qN0→R (q>1), or more general isolated time scales, a different definition of periodicity is needed. A recently introduced definition of periodicity for such general isolated time scales, including the quantum calculus, not only addressed this gap but also inspired this work. We now return to the continuous case and present the concept of ν-periodicity that connects these different formulations of periodicity for general discrete time domains with the continuous domain. Our definition of ν-periodicity preserves crucial translation invariant properties of integrals over ν-periodic functions and, for ν(t)=t+ω, ν-periodicity is equivalent to the classical periodicity condition with period ω. We use the classification of ν-periodic functions to discuss the existence and uniqueness of ν-periodic solutions to linear homogeneous and nonhomogeneous differential equations. If ν(t)=t+ω, our results coincide with the results known for periodic differential equations. By using our concept of ν-periodicity, we gain new insights into the classes of solutions to linear nonautonomous differential equations. We also investigate the existence, uniqueness, and global stability of ν-periodic solutions to the nonlinear logistic model and apply it to generalize the Cushing–Henson conjectures, originally formulated for the discrete Beverton–Holt model.

Keywords: Periodicity; Existence; Uniqueness; Global stability; Linear differential equations; Logistic growth; Beverton–Holt model; Cushing–Henson conjecture (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007792400691X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:186:y:2024:i:c:s096007792400691x

DOI: 10.1016/j.chaos.2024.115139

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s096007792400691x