Stochastic artificial neuron based on Ovonic Threshold Switch (OTS) and its applications for Restricted Boltzmann Machine (RBM)
Seongil Im,
JinGyeong Hwang,
Jae-Seung Jeong,
Hyejin Lee,
Min Hyuk Park,
Jeong Ho Cho,
Hyunsu Ju and
Suyoun Lee
Chaos, Solitons & Fractals, 2024, vol. 186, issue C
Abstract:
Recent advancements in artificial intelligence systems have been propelled spectacularly by the progress in machine learning techniques, particularly deep neural networks and spiking neural networks. However, such software and CMOS-based approaches present challenges in terms of energy efficiency and scalability. To address these issues, there has been growing interest in the development of energy-efficient ML techniques centered around the restricted Boltzmann machine (RBM). The RBM capitalizes on the Contrastive Divergence, a local learning rule that reduces computational load and energy consumption. Additionally, the RBM can serve as a foundational unit for the deep belief net (DBN). In this study, a simple stochastic neuron device composed of the Ovonic threshold switch (OTS) connected in series with a resistor (Rload) is proposed. Demonstrating probabilistic switching that follows a sigmoid function, this behavior can be adjusted based on the width and interval of the input pulses. Through simulation studies, the device demonstrated successful application in the recognition and reconstruction of handwritten digits.
Keywords: Ovonic Threshold Switch (OTS); Stochastic artificial neuron; Neuromorphic computing; Restricted Boltzmann Machine (RBM); Deep Belief Network (DBN) (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924007471
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007471
DOI: 10.1016/j.chaos.2024.115195
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().