Dynamics of non–identical coupled Chialvo neuron maps
A.P. Kuznetsov,
Y.V. Sedova and
N.V. Stankevich
Chaos, Solitons & Fractals, 2024, vol. 186, issue C
Abstract:
We study numerically the dynamics of low–dimensional ensembles of discrete neuron models - Chialvo maps. We are focused on choosing the autonomous map parameters corresponding to the invariant curve. We consider two cases of coupling organization: (i) via a nonlinear function of models; (ii) linear coupling, which is an analog of electrical neuron interaction. For the first case, the possibility of invariant curve doublings and the emergence of quasi-periodicity within Arnold tongues as a result of the secondary Neimark-Sacker bifurcation are found. For the second case, we discover an area of three-frequency quasi-periodicity for the case of two neurons. It arises softly as a result of quasi-periodic Hopf bifurcation. We demonstrate a set of resonant two-frequency regimes tongues embedded in this area and bounded by lines of saddle-node bifurcations of invariant curves. For ensemble of three linearly coupled maps, four-frequency quasi-periodicity becomes possible with a built-in system of tongues of three-frequency regimes (tori). We discuss the effect of noise and the evolution of “noise quasi-periodic” regimes, resonant regimes of this type and bifurcations of invariant tori with increasing of noise intensity.
Keywords: Neuron; Coupled maps; Lyapunov exponent; Multi-frequency oscillations; chaos (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924007896
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007896
DOI: 10.1016/j.chaos.2024.115237
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().