Understanding the dual effects of linear cross-diffusion and geometry on reaction–diffusion systems for pattern formation
Wakil Sarfaraz,
Gulsemay Yigit,
Raquel Barreira,
Lakhdar Remaki,
Muflih Alhazmi and
Anotida Madzvamuse
Chaos, Solitons & Fractals, 2024, vol. 186, issue C
Abstract:
In this work, we study the dual effects of linear cross-diffusion and geometry on reaction–diffusion systems for pattern formation on rectangular domains. The spatiotemporal dynamics of the reaction–diffusion system with linear cross-diffusion are explored for the case of an activator-depleted model of two chemical species in terms of the domain size and its model parameters. Linear stability analysis is employed to derive the constraints which are necessary in understanding the dual roles of linear cross-diffusion and domain-size in studying the instability of the reaction–diffusion system. The conditions are proven in terms of lower and upper bounds of the domain-size together with the reaction, self- and cross-diffusion coefficients. The full parameter classification of the model system is presented in terms of the relationship between the domain size and cross-diffusion-driven instability. Subsequently, regions showing Turing instability, Hopf and transcritical types of bifurcations are demonstrated using the parameter values of the system. In this work, our theoretical findings are validated according to the proper choice of parameters in order to understand the effects of domain-size and linear cross-diffusion on the long-term spatiotemporal behaviour of solutions of the reaction–diffusion system. For illustrative purposes, numerical simulations showing each of the three types of dynamics are examined for the Schnakenberg kinetics, also known as an activator-depleted reaction kinetics.
Keywords: Reaction–diffusion systems; Pattern formation; Diffusion-driven instability; Cross-diffusion; Turing instability; Domain-dependency; Hopf and transcritical bifurcations (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924008476
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008476
DOI: 10.1016/j.chaos.2024.115295
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().