Neuron configuration enhances the synchronization dynamics in ring networks with heterogeneous firing patterns
Agustin Farrera-Megchun,
Pablo Padilla-Longoria,
Gerardo J. Escalera Santos,
Jesús Espinal-Enríquez and
Roberto Bernal-Jaquez
Chaos, Solitons & Fractals, 2024, vol. 187, issue C
Abstract:
Neuron synchronization is fundamental for brain dynamics. While several efforts have been made to understand neuron coupling between tonic and bursting neurons, the position of neurons in a neural network and its relationship with synchronization is not fully understood. This work investigates the impact of neuronal heterogeneity on firing pattern transitions and synchronization in networks comprising tonic and bursting neurons. Using the Huber-Braun model, we explore two configurations: one with neurons grouped closely and another with maximal separation. Our findings reveal that while increased coupling strength generally promotes synchronization, the specific mix of neuron types and their spatial configuration crucially modulate both synchronization and firing pattern transitions, leading to phenomena such as cluster synchronization and global phase synchrony. The results indicate that the configuration with maximal separation and with mostly bursting neurons synchronizes more quickly. Firing pattern transitions are also configuration-dependent. For example, in the network with half tonic and half bursting, the configuration grouped closely undergoes diverse complex dynamics transition in the synchronized state, while the other configuration synchronize with chaotic bursting dynamics. Behaviors like cluster synchronization are observed in this network. The study underscores the significance of considering neuronal heterogeneity in understanding network dynamics.
Keywords: Neuron configuration; Synchronization; Firing patterns; Bursting and tonic neurons; Huber–Braun neurons; Neuronal heterogeneity (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924010130
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924010130
DOI: 10.1016/j.chaos.2024.115461
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().