EconPapers    
Economics at your fingertips  
 

A general deterministic model of ordinary differential equations for a broad variety of different diseases

Christoph Sticha, Francesco Picasso, Christina Kuttler, Michael Hoelscher, Andreas Wieser and Noemi Castelletti

Chaos, Solitons & Fractals, 2024, vol. 188, issue C

Abstract: The COVID-19 pandemic underscored the pivotal role of mathematical models in comprehending pandemic dynamics and making accurate predictions under diverse interventions. Various mathematical models, particularly deterministic ones, have proven valuable for analyzing the impact of political, social, and medical measures during ongoing pandemics. In this study, we aim to formulate and characterize a comprehensive model applicable to different infectious diseases. Reviewing numerous disease-specific models reveals a common foundation in the Kermack–McKendrick model (SIR model). While there are more general versions incorporating population dynamics, vector populations, and vaccination, none encompass all attributes simultaneously. To address this gap, we propose a comprehensive general model capable of accommodating different transmission modes, pandemic control measures, and diverse pathogens. Unlike disease-specific models, having such a pre-established model with foundational mathematical properties analyzed eliminates the need to reevaluate these characteristics for each new disease-specific model. This article presents our comprehensive general model, supported by mathematical analysis and numerical simulations, offering a versatile tool for understanding the dynamics of emerging infectious diseases and guiding intervention strategies. The applicability of the model is demonstrated through simulations.

Keywords: General epidemic model; Ordinary differential equations; Reproduction rate; Compartmental model; Epidemic control; Numerical simulation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924010270
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010270

DOI: 10.1016/j.chaos.2024.115475

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010270