Type-II Apollonian network: More robust and more efficient Apollonian network
Fei Ma,
Jinzhi Ouyang,
Haobin Shi,
Wei Pan and
Ping Wang
Chaos, Solitons & Fractals, 2024, vol. 188, issue C
Abstract:
The family of planar graphs is a particularly important family and models many networks including the layout of printed circuits. The widely-known Apollonian packing process has been used as guideline to create the typical Apollonian network with planarity. In this paper, we propose a new principled framework based on the Apollonian packing process to generate model as complex network, and obtain a family of new networks called Type-II Apollonian network At. While our network and the typical Apollonian network are maximal planar, the former turns out to be Hamiltonian and Eulerian, however, the latter is not. Then, we in-depth study some fundamental structural properties on network At, and verify that network At is sparse, has scale-free feature and small-world property, and exhibits disassortative mixing structure. Next, we derive the asymptotic solution of the spanning tree entropy of network At by designing an effective algorithm, which suggests that Type-II Apollonian network is more robust to a random removal of edges than the typical Apollonian network. Additionally, we study trapping problem on network At, and use average trapping time as metric to show that Type-II Apollonian network At has more efficient underlying structure for fast information diffusion than the typical Apollonian network.
Keywords: Type-II Apollonian networks; Scale-free feature; Small-world property; Spanning trees; Trapping problem (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924010385
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010385
DOI: 10.1016/j.chaos.2024.115486
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().