Experimental evaluation of the optimal working temperature for the Josephson threshold detector in single-photon detection applications
Soragga Ali,
P.H. Ouyang and
L.F. Wei
Chaos, Solitons & Fractals, 2024, vol. 188, issue C
Abstract:
The optimal working temperature of Josephson threshold detectors (JTDs) in single-photon detection is a critical factor that directly affects their performance and sensitivity. This study aims to evaluate the optimal working temperature for JTDs to achieve enhanced single-photon detection capabilities. A comprehensive experimental characterization is performed to assess the performance of JTDs over a wide working temperature range, from cryogenic temperatures up to the critical temperature of the Al/AlOx/Al-SIS (superconductor-insulator-superconductor) junction. Additionally, we analyse the underlying physical mechanisms that govern the temperature dependence of JTDs considering the thermal fluctuations, and quasiparticle excitations. Through our evaluation, we identify the optimal working temperature of 39.5 mK (± 0.5 mK) out of the working temperature range 35 mK ≤ Twork ≤ 45 mK, which optimizes the trade-off between detection efficiency and noise elimination, enabling JTDs to achieve high sensitivity. Furthermore, we estimate various performance metrics of the proposed JTD, such as the detection efficiency, which is estimated to be 0.952, noise equivalent power (NEP) is ∼3.9 × 10−18 W.Hz−1/2, the photon rate is 27.9 photons/s, and signal-to-noise ratio (SNR), which shows a maximum Kumar-Caroll (KC) index value of 97.5 picked 39.5 mK, yielding the best overall performance for the JTDs.
Keywords: Josephson threshold detector; Josephson junction; Single-photon; Working temperature; Switching current distribution; Thermal enhancement (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924010476
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010476
DOI: 10.1016/j.chaos.2024.115495
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().