EconPapers    
Economics at your fingertips  
 

Data-driven prediction of vortex solitons and multipole solitons in whispering gallery mode microresonator

Zhengxin Yu, Longfei Ren, Lang Li, Chaoqing Dai and Yueyue Wang

Chaos, Solitons & Fractals, 2024, vol. 188, issue C

Abstract: Deep learning incorporating physics knowledge has become a powerful tool for studying the dynamic behavior of high-dimensional nonlinear systems. In this paper, the two-stage mini-batch resampling of adaptive physics-informed neural network (TMA-PINN) method is proposed to solve the (2 + 1)-dimensional variable-coefficient Lugiato-Lefever equation (vLLE). The vortex soliton in the WGM microresonator with different external excitation is investigated by TMA-PINN. It is found that external excitation can cause the rotation of vortex solitons. In addition, the effect of topological charge and external excitation on the dynamical characteristics of spatial solitons including vortex solitons and multipole solitons are investigated. The results show that the final shape of the rotation of vortex solitons and the number of azimuth lobes of multipole solitons are controlled by topological charges. Compared with classical PINN, TMA-PINN can better handle the gradient balance of various loss terms in (2 + 1)-dimensional vLLE to reconstruct the dynamic behavior of WGM microresonator solitons, having potential applications in other nonlinear systems.

Keywords: Whispering gallery mode; Lugiato-Lefever equation; Physics-informed neural network; Vortex soliton; Multipole soliton (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077924011147
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924011147

DOI: 10.1016/j.chaos.2024.115562

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924011147