Hilbert space, the number of Higgs particles and the quantum two-slit experiment
M.S. El Naschie
Chaos, Solitons & Fractals, 2006, vol. 27, issue 1, 9-13
Abstract:
Rigorous mathematical formulation of quantum mechanics requires the introduction of a Hilbert space. By contrast, the Cantorian E-infinity approach to quantum physics was developed largely without any direct reference to the afore mentioned mathematical spaces. In the present work we present a novel reinterpretation of basic ε(∞) Cantorian spacetime relations in terms of the Hilbert space of quantum mechanics. In this way, we gain a better understanding of the physical and mathematical structure of quantum spacetime. In particular we show that the two-slit experiment required a definite topology which is consistent with a certain fuzzy Kähler manifold or more generally a Cantorian spacetime manifold. Finally by determining the Euler class of this manifold, we can estimate the most likely number of Higgs particles which may be discovered.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (54)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905004819
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:1:p:9-13
DOI: 10.1016/j.chaos.2005.05.010
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().