On the intuitionistic fuzzy topological spaces
Reza Saadati and
Jin Han Park
Chaos, Solitons & Fractals, 2006, vol. 27, issue 2, 331-344
Abstract:
In this paper, we define precompact set in intuitionistic fuzzy metric spaces and prove that any subset of an intuitionistic fuzzy metric space is compact if and only if it is precompact and complete. Also we define topologically complete intuitionistic fuzzy metrizable spaces and prove that any Gδ set in a complete intuitionistic fuzzy metric spaces is a topologically complete intuitionistic fuzzy metrizable space and vice versa. Finally, we define intuitionistic fuzzy normed spaces and fuzzy boundedness for linear operators and so we prove that every finite dimensional intuitionistic fuzzy normed space is complete.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077905002705
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:27:y:2006:i:2:p:331-344
DOI: 10.1016/j.chaos.2005.03.019
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().