The high frequency trade off between speed and sophistication
Daniel Ladley ()
Journal of Economic Dynamics and Control, 2020, vol. 116, issue C
Abstract:
Central to the ability of a high frequency trader to make money is speed. In order to be first to trading opportunities, firms invest in the fastest hardware and the shortest connections between their machines and the markets. Yet this is not enough: algorithms must be short, no more than a few instructions. As a result there is a trade-off in the design of optimal high frequency trading strategies: being the fastest necessitates being less sophisticated. To understand the effect of this tension a computational model is presented that captures latency, both of code execution and information transmission. Trading algorithms are modelled through genetic programming with longer programmes allowing more sophisticated decisions at the cost of slower execution times. It is shown that, depending on the market composition, short fast strategies and slower more sophisticated strategies may both be viable and exploit different trading opportunities. The relative profits of these different approaches vary, however, slow traders benefit and social welfare increase in the presence of HFTs. A suite of regulations are tested to manage the risks associated with high frequency trading, the majority are found to be ineffective, though constraining the ratio of orders to trades may be promising.
Keywords: Market micro-Structure; Order book; Cognitive ability; High frequency trading; Regulation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165188920300804
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:dyncon:v:116:y:2020:i:c:s0165188920300804
DOI: 10.1016/j.jedc.2020.103912
Access Statistics for this article
Journal of Economic Dynamics and Control is currently edited by J. Bullard, C. Chiarella, H. Dawid, C. H. Hommes, P. Klein and C. Otrok
More articles in Journal of Economic Dynamics and Control from Elsevier
Bibliographic data for series maintained by Catherine Liu ().