EconPapers    
Economics at your fingertips  
 

Who will sign a double tax treaty next? A prediction based on economic determinants and machine learning algorithms

Dmitry Erokhin and Martin Zagler

Economic Modelling, 2024, vol. 139, issue C

Abstract: Double tax treaties play a crucial role in shaping international economic relations, yet predicting which country pairs are likely to sign tax treaties remains a challenge. This study addresses this gap by employing a novel machine learning approach to predict tax treaty formations. Using data from a wide range of countries, we apply a series of classification algorithms and identify 59 country pairs likely to have tax treaties given their economic conditions. Our findings reveal that variables such as foreign direct investment, trade, Gross Domestic Product, and distance are significant predictors of tax treaty formations. Importantly, we demonstrate that the random forest classification algorithm outperforms conventional econometric methods in predicting tax treaty formations. By identifying which potential treaties exhibit a high probability of success, this paper gives policymakers an indication where to focus their attention and resources in upcoming treaty negotiations.

Keywords: Machine learning; Treaty formation; Double tax treaty (search for similar items in EconPapers)
JEL-codes: F53 H20 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0264999324001767
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecmode:v:139:y:2024:i:c:s0264999324001767

DOI: 10.1016/j.econmod.2024.106819

Access Statistics for this article

Economic Modelling is currently edited by S. Hall and P. Pauly

More articles in Economic Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecmode:v:139:y:2024:i:c:s0264999324001767