Can real-time investor sentiment help predict the high-frequency stock returns? Evidence from a mixed-frequency-rolling decomposition forecasting method
Yi Cai,
Zhenpeng Tang and
Ying Chen
The North American Journal of Economics and Finance, 2024, vol. 72, issue C
Abstract:
This research examines the predictive effect of real-time investor sentiment on high-frequency stock returns. Utilizing text sentiment analysis, we extract investor sentiment with a half-hour frequency from the stock message board. The RR-MIDAS method is used to model half-hourly sentiment and three-minute stock returns, and economic analysis reveals that investor sentiment significantly affects the stock returns during seven high-frequency periods, and the influence gradually weakens. Subsequently, we propose the “MF-EEMD-ML” prediction system, which introduces a rolling decomposition algorithm into the RR-MIDAS framework for predicting high-frequency trend items combined with real-time forum sentiment. The results, using rolling EMD decomposition for comparison, show that the “MF-EEMD-ML” system achieves a maximum reduction of 19.18 % in MAE, 19.08 % in RMSE, 11.71 % in SMAPE, and a maximum improvement of 16.66 % in DS. Additionally, the outcomes of the Diebold-Mariano (DM) tests also demonstrate that the “MF-EEMD-ML” prediction system significantly outperforms both the “MF-EMD-ML” system and the LR model.
Keywords: Stock message boards; Real-time investor sentiment; High-frequency stock returns; Reverse mixed-frequency data sampling; Rolling decomposition; Machine learning prediction (search for similar items in EconPapers)
JEL-codes: G10 G14 G17 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S106294082400072X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecofin:v:72:y:2024:i:c:s106294082400072x
DOI: 10.1016/j.najef.2024.102147
Access Statistics for this article
The North American Journal of Economics and Finance is currently edited by Hamid Beladi
More articles in The North American Journal of Economics and Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().