Forecasting conditional volatility based on hybrid GARCH-type models with long memory, regime switching, leverage effect and heavy-tail: Further evidence from equity market
Yirong Huang and
Yi Luo
The North American Journal of Economics and Finance, 2024, vol. 72, issue C
Abstract:
The properties of clustering, long memory, switching regime, leverage effect and heavy tail in volatility dynamic behavior are induced by important stylized facts in financial markets. There is still a controversy whether incorporating these properties could improve the modelling and forecasting performance of volatility. We construct hybrid volatility models via three perspectives including short memory, long memory and Markov switching GARCH with leverage effect and heavy tail, and empirically compare their performance of in-sample estimation, out-of-sample forecast and risk measurement based on trading data of Chinese equity market index. The out-of-sample forecast results indicate that the FIEGARCH model with innovation distribution of GED outperforms the competing models, and the backtesting results of VaR and ES confirm that this model performs well in the application of risk measurement.
Keywords: Volatility Forecast; GARCH; Long Memory; Markov Switching Regime; Risk Measurement (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1062940824000731
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecofin:v:72:y:2024:i:c:s1062940824000731
DOI: 10.1016/j.najef.2024.102148
Access Statistics for this article
The North American Journal of Economics and Finance is currently edited by Hamid Beladi
More articles in The North American Journal of Economics and Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().