EconPapers    
Economics at your fingertips  
 

Bubble regime identification in an attention-based model for Bitcoin and Ethereum price dynamics

Alessandra Cretarola and Gianna Figà-Talamanca

Economics Letters, 2020, vol. 191, issue C

Abstract: In this paper we extend the model in Cretarola, Figà-Talamanca, “Detecting bubbles in Bitcoin price dynamics via market exuberance”, Annals of Operations Research (2019), by allowing for a state-dependent correlation parameter between asset returns and market attention. We assume that the change of state is described by a continuous time latent Markov chain and we propose an estimation procedure based on the conditional maximum likelihood and on the Hamilton filter. Finally, model parameters, as well as Markov chain transition probabilities, are estimated on Bitcoin and Ethereum returns in case market attention is measured via the Google Search Volume Index for the keywords “bitcoin” and “ethereum”, respectively; up to four regimes are considered in the empirical application. The empirical outcomes show that the model is not only capable of identifying bubble and non-bubble regimes but also enables the interpretation of the correlation between cryptocurrencies and their market attention as a tuning to define the speed at which a bubble boosts.

Keywords: Bitcoin; Ethereum; Regime-switching model; Bubble (search for similar items in EconPapers)
JEL-codes: C32 G12 G17 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0165176519304203
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecolet:v:191:y:2020:i:c:s0165176519304203

DOI: 10.1016/j.econlet.2019.108831

Access Statistics for this article

Economics Letters is currently edited by Economics Letters Editorial Office

More articles in Economics Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecolet:v:191:y:2020:i:c:s0165176519304203