Cohort aggregation modelling for complex forest stands: Spruce–aspen mixtures in British Columbia
Oscar García
Ecological Modelling, 2017, vol. 343, issue C, 109-122
Abstract:
Mixed-species growth models are needed as a synthesis of ecological knowledge and for guiding forest management. Individual-tree models have been commonly used, but the difficulties of reliably scaling from the individual to the stand level are often underestimated. Emergent properties and statistical issues limit their effectiveness. A more holistic modelling of aggregates at the whole stand level is a potentially attractive alternative. This work explores methodology for developing biologically consistent dynamic mixture models where the state is described by aggregate stand-level variables for species or age/size cohorts. The methods are demonstrated and tested with a two-cohort model for spruce–aspen mixtures named SAM. The models combine single-species submodels and submodels for resource partitioning among the cohorts. The partitioning allows for differences in competitive strength among species and size classes, and for complementarity effects. Height growth reduction in suppressed cohorts is also modelled. SAM fits well the available data, and exhibits behaviors consistent with current ecological knowledge. The general framework can be applied to any number of cohorts, and should be useful as a basis for modelling other mixed-species or uneven-aged stands.
Keywords: Mixed species stands; Competition; Resource capture; Complementarity; Forest growth and yield; Replacement series (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380016306160
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:343:y:2017:i:c:p:109-122
DOI: 10.1016/j.ecolmodel.2016.10.020
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().