Common quandaries and their practical solutions in Bayesian network modeling
Bruce G. Marcot
Ecological Modelling, 2017, vol. 358, issue C, 1-9
Abstract:
Use and popularity of Bayesian network (BN) modeling has greatly expanded in recent years, but many common problems remain. Here, I summarize key problems in BN model construction and interpretation, along with suggested practical solutions. Problems in BN model construction include parameterizing probability values, variable definition, complex network structures, latent and confounding variables, outlier expert judgments, variable correlation, model peer review, tests of calibration and validation, model overfitting, and modeling wicked problems. Problems in BN model interpretation include objective creep, misconstruing variable influence, conflating correlation with causation, conflating proportion and expectation with probability, and using expert opinion. Solutions are offered for each problem and researchers are urged to innovate and share further solutions.
Keywords: Bayesian networks; Modeling problems; Modeling solutions; Bias; Machine learning; Expert knowledge (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380016308134
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:358:y:2017:i:c:p:1-9
DOI: 10.1016/j.ecolmodel.2017.05.011
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().