Disentangling the biotic and abiotic drivers of emergent migratory behavior using individual-based models
Stephanie Dodson,
Briana Abrahms,
Steven J. Bograd,
Jerome Fiechter and
Elliott L. Hazen
Ecological Modelling, 2020, vol. 432, issue C
Abstract:
Understanding the drivers of movement, migration and distribution of individuals is important for insight into how species will respond to changing environmental conditions. Both abiotic and biotic factors are thought to influence migratory behavior, but their relative roles are difficult to disentangle. For migratory marine predators, both temperature and prey availability have been shown to be significant predictors of space use, though often researchers rely on physical proxies due to the lack of data on dynamic prey fields. We generated spatially explicit individual-based movement models to evaluate the relative roles of abiotic (sea surface temperature; SST) and biotic (prey availability) factors in driving blue whale (Balaenoptera musculus) movement decisions and migratory behavior in the eastern North Pacific. Using output from a lower trophic ecosystem model coupled with a regional ocean circulation model, we parameterized a blue whale movement model that explicitly incorporates prey fields in addition to physical proxies. A model using both SST and prey data reproduced blue whale foraging behavior including realistic timing of latitudinal migrations. SST- and prey-only population models demonstrated important independent effects of each variable. In particular, the SST-only model revealed that warm temperatures limited krill foraging opportunities but failed to drive seasonal foraging patterns, whereas the prey-only model revealed more realistic seasonal and interannual differences in foraging behavior. Our individual-based movement model helps elucidate the mechanisms underlying migration and demonstrates how fine-scale individual decision-making can lead to emergent migratory behavior at the population level. Moreover, determining the relative effects of the physical environment and prey availability on the movement decisions of threatened species is critical to understand how they may respond to changing ocean conditions.
Keywords: Animal migration; Behavioral mechanisms; Blue whale; Individual-based model; Movement ecology (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380020302957
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:432:y:2020:i:c:s0304380020302957
DOI: 10.1016/j.ecolmodel.2020.109225
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().