Multiple working hypotheses for hyperallometric reproduction in fishes under metabolic theory
Bastien Sadoul,
Benjamin Geffroy,
Stephane Lallement and
Michael Kearney
Ecological Modelling, 2020, vol. 433, issue C
Abstract:
Hyperallometric reproduction, whereby large females contribute relatively more to the renewal of the population than small females, is purported to be widespread in wild populations, especially in fish species. Bioenergetic models derived from a sufficiently general metabolic theory should be able to capture such a relationship but it was recently stated that no existing models adequately capture hyperallometric reproduction. If this were true it would seriously challenge our capacity to develop robust predictions of the life history and population dynamics in changing environments for many species. Here, using the European sea bass (Dicentrarchus labrax) as a test case, we demonstrate multiple ways that hyperallometric reproduction in a population may emerge from the Dynamic Energy Budget (DEB) theory, some inherently related to the metabolism and life history and others related to plastic or genetically based intraspecific variation. In addition, we demonstrate an empirical and modelled hypoallometric scaling of reproduction in this species when environment is controlled. This work shows how complex metabolic responses may underlie apparently simple relationships between weight and reproduction in the wild and provides new and testable hypotheses regarding the factors driving reproductive scaling relationships found in the wild.
Keywords: Fishes; Dynamic energy budget; Scaling; Life history; Variability (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380020302982
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:433:y:2020:i:c:s0304380020302982
DOI: 10.1016/j.ecolmodel.2020.109228
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().