EconPapers    
Economics at your fingertips  
 

Agent-based modelling of juvenile eel migration via selective tidal stream transport

Thomas Benson, Jasper de Bie, Jennifer Gaskell, Paolo Vezza, James R. Kerr, Darren Lumbroso, Markus R. Owen and Paul S. Kemp

Ecological Modelling, 2021, vol. 443, issue C

Abstract: Recruitment of temperate eel species Anguilla anguilla, A. rostrata & A. japonica has declined over the last few decades due to human activities, such as overfishing and construction of migratory barriers (e.g. dams, weirs and sluices) and hazardous energy infrastructure (e.g. turbines, intakes and outfalls). Numerical models, substantiated with data from field and laboratory studies, can potentially predict and quantify the relative impacts of such activities, thereby assisting in the sustainable management of eel populations. Here, we present an agent-based model (ABM) of juvenile eel migration up estuaries. The model includes relevant eel behaviours and environmental conditions that, according to the literature, influence upstream migration. Crucially, by assessing the local salinity gradient and relative flow direction, the modelled eels (agents) self-determine whether the tide is flooding or ebbing and orientate themselves for navigation, with no top-down instructions. This allows the agents to decide which particular behaviour to undertake as part of Selective Tidal Stream Transport (STST). The developed ABM is coupled to a hydrodynamic model of the Thames Estuary and the results substantiated by comparison against eel trap data. Combinations of the various STST behaviours are systematically tested and the influence they have on up-estuary migration is assessed in terms of relative energy expenditure. The parameterised model is then used predictively at Milford Haven Waterway to investigate potential impacts on the juvenile eel population due to entrainment in a power plant cooling water intake and outfall. Results from the Thames model case study indicate that including bed anchoring behaviour is essential for achieving a good comparison with the eel trap data and the choice of salinity detection threshold is also important. If daylight avoidance (diel) behaviour is not included, the most energy efficient migration is achieved using just two STST behaviours (ebb tide bed anchoring and upward migration during flood). With diel behaviour included, energy expenditure is greater, but some efficiency is regained by including all of the STST behaviours. For the Milford Haven case study, the model predicted a juvenile eel intake and outfall entrainment rate of 2.0% and 4.7%, respectively. It is concluded that the ABM is a valuable tool for assessing potential impacts on the recruitment of eels (extendable to other species) and could be used to assist in site-selection and low impact design of energy infrastructure in tidal environments.

Keywords: ABM; Agent-based model; Glass eel; Elver; IBM; Migration; Selective tidal stream transport (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380021000211
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:443:y:2021:i:c:s0304380021000211

DOI: 10.1016/j.ecolmodel.2021.109448

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:443:y:2021:i:c:s0304380021000211