Combined climate and regional mosquito habitat model based on machine learning
Ralf Wieland,
Katrin Kuhls,
Hartmut H.K. Lentz,
Franz Conraths,
Helge Kampen and
Doreen Werner
Ecological Modelling, 2021, vol. 452, issue C
Abstract:
Besides invasive mosquito species also several native species are proven or suspected vectors of arboviruses as West Nile or Usutu virus in Western Europe. Habitat models of these native vectors can be a helpful tool for assessing the risk of autochthonous occurrence, outbreaks and spread of diseases caused by such arboviruses. Modelling native mosquitoes is complicated because of the perfect adaptation to the climatic and landscape conditions and their high abundance in contrast to invasive species. Here we present a new approach for such a habitat model for native mosquito species in Germany, which are considered as vectors of West Nile virus (WNV). Epizootic emergence of WNV was registered in Germany since 2018. The models are based on surveillance data of mosquitoes from the German citizen science project “Mückenatlas” complemented by data from systematic trap monitoring in Germany, and on data freely available from the Deutscher Wetterdienst (DWD) and OpenStreetMap (OSM). While climatic factors still play an important role, we could show that habitat suitability is predictable only by the combination of the climate model with a regional model. Both models were based on a machine-learning approach using XGBoost. Evaluation of the accuracy of the models was done by statistical analysis, determining among others feature importances using the SHAP-Library. Final output of the combined climatic and regional models are maps showing the superposed habitat suitability which are generated through a number of steps described in detail. These maps also include the registered cases of WNV infections in the selected region of Germany.
Keywords: Citizen science data; Mosquito habitat modelling; Machine learning; XGBoost; West Nile virus; Vector borne diseases (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380021001563
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:452:y:2021:i:c:s0304380021001563
DOI: 10.1016/j.ecolmodel.2021.109594
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().