EconPapers    
Economics at your fingertips  
 

The impacts of vegetation on the soil surface freezing-thawing processes at permafrost southern edge simulated by an improved process-based ecosystem model

Zhenhai Liu, Bin Chen, Shaoqiang Wang, Qinyi Wang, Jinghua Chen, Weibo Shi, Xiaobo Wang, Yuanyuan Liu, Yongkai Tu, Mei Huang, Junbang Wang, Zhaosheng Wang, Hui Li and Tongtong Zhu

Ecological Modelling, 2021, vol. 456, issue C

Abstract: Permafrost degradation due to climate warming would potentially increase the release of previously frozen soil carbon and change the carbon budget of the cold region ecosystem. The underlying permafrost degradation would be effectively mediated by soil surface freezing-thawing (FT) processes. Aboveground vegetation can regulate soil FT processes, however its effects on ground thermal transfer have not been well represented by ecosystem models. In this study, we improved the hydrothermal module of the Boreal Ecosystem Productivity Simulator (BEPS) through more careful parameterization of snowpack density, puddled water, soil organic matter and super-cooled soil water. The impacts of vegetation on the soil surface FT processes have also been investigated using the improved BEPS model and the measured soil temperature data at forest and grassland sites on the southern edge of permafrost region in Mongolia and northeastern China. The improved BEPS model performs better than the original model in simulations of soil temperature and soil FT processes. Smaller amplitudes of soil diurnal FT cycles were found in forest sites compared to grassland sites. Forest sites have delayed soil thaw timing and similar soil freezing time compared to grassland sites. Differences in snow depths and soil organic matter content due to distinct vegetation community structures have considerable influences on the disparity in soil FT processes. Thus, it is important to improve the simulation of the impacts of vegetation on soil surface FT processes for better forecasting the permafrost degradation.

Keywords: Freeze-thaw; Vegetation; Model improvement; Soil temperature (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380021002222
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:456:y:2021:i:c:s0304380021002222

DOI: 10.1016/j.ecolmodel.2021.109663

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:456:y:2021:i:c:s0304380021002222