Spatial cross-validation is not the right way to evaluate map accuracy
Alexandre M.J.-C. Wadoux,
Gerard B.M. Heuvelink,
Sytze de Bruin and
Dick J. Brus
Ecological Modelling, 2021, vol. 457, issue C
Abstract:
For decades scientists have produced maps of biological, ecological and environmental variables. These studies commonly evaluate the map accuracy through cross-validation with the data used for calibrating the underlying mapping model. Recent studies, however, have argued that cross-validation statistics of most mapping studies are optimistically biased. They attribute these overoptimistic results to a supposed serious methodological flaw in standard cross-validation methods, namely that these methods ignore spatial autocorrelation in the data. They argue that spatial cross-validation should be used instead, and contend that standard cross-validation methods are inherently invalid in a geospatial context because of the autocorrelation present in most spatial data. Here we argue that these studies propagate a widespread misconception of statistical validation of maps. We explain that unbiased estimates of map accuracy indices can be obtained by probability sampling and design-based inference and illustrate this with a numerical experiment on large-scale above-ground biomass mapping. In our experiment, standard cross-validation (i.e., ignoring autocorrelation) led to smaller bias than spatial cross-validation. Standard cross-validation was deficient in case of a strongly clustered dataset that had large differences in sampling density, but less so than spatial cross-validation. We conclude that spatial cross-validation methods have no theoretical underpinning and should not be used for assessing map accuracy, while standard cross-validation is deficient in case of clustered data. Model-free, design-unbiased and valid accuracy assessment is achieved with probability sampling and design-based inference. It is valid without the need to explicitly incorporate or adjust for spatial autocorrelation and perfectly suited for the validation of large scale biological, ecological and environmental maps.
Keywords: Map quality; Model performance; Above-ground biomass; Sampling theory; Design-based; Model-based; Random forest; Design-unbiased (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380021002489
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:457:y:2021:i:c:s0304380021002489
DOI: 10.1016/j.ecolmodel.2021.109692
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().