EconPapers    
Economics at your fingertips  
 

An agent-based model to simulate the boosted Sterile Insect Technique for fruit fly management

Esther Gnilane Diouf, Thierry Brévault, Saliou Ndiaye, Emile Faye, Anaïs Chailleux, Paterne Diatta and Cyril Piou

Ecological Modelling, 2022, vol. 468, issue C

Abstract: The sterile insect technique (SIT) is a method of biological control of pests and disease vector insects. It includes mass-rearing and release of sterile males of the target species so that wild females mated with sterile males would not produce offspring. An innovative version of this technique, called boosted SIT, relies on the use of sterile males as vectors of biocides to trigger an epizootic in the wild fruit fly population. We built an agent-based model to assess the feasibility of this technique and main modalities of field implementation for the control of the Oriental fruit fly, Bactrocera dorsalis, using the entomopathogenic fungi, Metarizhium anisopliae, as a biocide. The model, called BOOSTIT (BactrOcera dOrsaliS boosTed sIT), simulates the spatio-temporal population dynamics of fruit flies in three different realistic landscape contexts. The releases of infected and uninfected sterile males were simulated and allowed the transmission of the pathogen within the wild fly population as a result of interactions between individuals. A main output was the measurement of losses in mango production. Validation of the model was done by comparing the simulated population dynamics with data from field monitoring (pheromone traps) in three landscapes of the Niayes area in Senegal. The population dynamics of wild flies were then simulated in an intensive cropping and mono-mango cultivar landscape under three scenarios: (1) without the release of sterile males, (2) with the release of non-contaminated sterile males (SIT) and (3) with the release of sterile contaminated males (boosted SIT). The results showed that SIT and boosted SIT strongly reduced the density of wild flies and the amount of infested fruits. Although parameters of the pathogen transfer between individuals need to be studied more deeply, results encourage the implementation of field trials to validate the efficacy of boosted SIT to control fruit flies.

Keywords: Population dynamics; Pattern-oriented modelling; Pest management; Entomovectoring; Bactrocera dorsalis; Metarhizium anisopliae (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380022000710
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:468:y:2022:i:c:s0304380022000710

DOI: 10.1016/j.ecolmodel.2022.109951

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:468:y:2022:i:c:s0304380022000710