EconPapers    
Economics at your fingertips  
 

Testing the effect of sample prevalence and sampling methods on probability- and favourability-based SDMs

Elisa Marchetto, Daniele Da Re, Enrico Tordoni, Manuele Bazzichetto, Piero Zannini, Simone Celebrin, Ludovico Chieffallo, Marco Malavasi and Duccio Rocchini

Ecological Modelling, 2023, vol. 477, issue C

Abstract: Predicting the occurrence probability of species is intrinsically dependent on the quality of the training dataset and, in particular, on the sample prevalence (i.e., the ratio between presences and absences). Whenever the number of presences and absences is not equal within the training dataset, the predictions deviate towards higher values as the sample prevalence increases and vice versa. As a result, probability models of species occurrence with different sample prevalence cannot be directly compared. The favourability concept was introduced to amend this limitation. Indeed, the favourability – i.e., the variation in the probability of occurrence regardless the sample prevalence – could reduce the degree of uncertainty when comparing species distributions despite different sample prevalences. To test this hypothesis, we simulated 50 virtual species and compared the predictive performance of four probability-based and favourability-based Species Distribution Models (GLM, GAM, RF, BRT) under a set of different prevalence values and sampling strategies (i.e, random and stratified sampling). Favourability-based models performed slightly better than probability-based models in predicting the species distribution over geographic space, confirming also their capability to reduce the variability of the predictions across different degrees of sample prevalence.

Keywords: Biodiversity; Ecological informatics; Spatial bias; Spatial ecology; Species distribution modelling (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380022003465
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:477:y:2023:i:c:s0304380022003465

DOI: 10.1016/j.ecolmodel.2022.110248

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:477:y:2023:i:c:s0304380022003465