EconPapers    
Economics at your fingertips  
 

Seasonal forecasting of pest population dynamics based on downscaled SEAS5 forecasts

Ayana Neta, Yoav Levi, Efrat Morin and Shai Morin

Ecological Modelling, 2023, vol. 480, issue C

Abstract: Among the varied environmental factors that influence insect life-history, temperature has a relatively profound effect that can be mathematically estimated with non-linear equations. Thus, many models that aim to predict insect-pest population dynamics use meteorological data as input to descriptive functions that predict the development rate, survival and reproduction of pest populations. In a previous study, we developed a temperature-dependent population dynamics model for the global insect-pest Bemisia tabaci, and verified its accuracy under field conditions. In the current work, which focused on Northern Israel, seasonal meteorological forecasts from the ECMWF SEAS5 coupled model were spatially and temporally stochastically downscaled by a weather generator tool using records from ERA5-Land reanalysis and meteorological stations. The local, hourly temperature time series served as input data to a population dynamics model, creating an ensemble of seasonal population forecasts from which probabilistic predictions could be made already at the beginning of the season (which lasts from March to November). Post-hoc evaluation of the seasonal forecast was done using the observed station temperatures as model input. Comparisons to predictions made using climatologic temperatures found the weather generator-based ones much more accurate in predicting the timing of each insect generation, although there was no difference between the two approaches in predicting the population size. Moreover, the weather generator-based predictions highly matched field observations made by pest inspectors during the growing season of 2021. Taken together, our findings indicate that the developed forecasting tool is capable of providing decision makers with the supporting data required for smart seasonal planning and economical- and environmental-driven optimal management of agricultural systems.

Keywords: Seasonal forecasting; Stochastic downscaling; Population dynamics; Bemisia tabaci; Weather generator; ECMWF SEAS5 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380023000546
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:480:y:2023:i:c:s0304380023000546

DOI: 10.1016/j.ecolmodel.2023.110326

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:480:y:2023:i:c:s0304380023000546