EconPapers    
Economics at your fingertips  
 

The individual-based forest landscape and disturbance model iLand: Overview, progress, and outlook

Werner Rammer, Dominik Thom, Martin Baumann, Kristin Braziunas, Christina Dollinger, Jonas Kerber, Johannes Mohr and Rupert Seidl

Ecological Modelling, 2024, vol. 495, issue C

Abstract: Forest ecosystems are changing rapidly, and landscape-level processes such as disturbance and dispersal are key drivers of change. Consequently, forest landscape models are important tools for studying forest trajectories under changing environmental conditions and their impacts on ecosystem service provisioning. Here, we synthesize 12 years of development and application of the individual-based forest landscape and disturbance model iLand. Specifically, we describe the fundamental model logic and give an overview of model components introduced over the years. Additionally, we outline how to initialize, evaluate and parameterize the model for new applications. iLand is a process-based forest landscape model that simulates forest dynamics at the level of individual trees. It accounts for continuous processes (tree growth, mortality, and regeneration) as well as discontinuous disturbances (wind, wildfire, and biotic agents) and forest management. Simulations span multiple spatial and temporal scales, from individual trees to landscapes of 105 hectares, and from hourly disturbance dynamics to centuries of forest development. Environmental conditions are represented by daily climate data and high-resolution soil information. The model was designed for flexibly addressing a wide range of research questions, features a rich graphical user interface and comprehensive scripting support. The model is open source and comes with extensive online model documentation. iLand has hitherto been applied in 50 peer-reviewed simulation studies across three continents. Applications primarily focused on the effects of climate change, disturbances and forest management on forest dynamics, ecosystem service provisioning and forest biodiversity. Future model development could address the representation of belowground processes, biotic interactions, and landscape dynamics beyond forest ecosystems. We conclude that process-based simulation of landscape-scale forest dynamics at the level of individual trees has proven a valuable approach of forest landscape modeling.

Keywords: Landscape modeling; Agent-based modeling; Simulation modeling; Forest dynamics; Model development; Model initialization; Model parameterization; Model evaluation; Model application (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030438002400173X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:495:y:2024:i:c:s030438002400173x

DOI: 10.1016/j.ecolmodel.2024.110785

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:495:y:2024:i:c:s030438002400173x