Jackknife model averaging
Bruce Hansen () and
Jeffrey Racine
Journal of Econometrics, 2012, vol. 167, issue 1, 38-46
Abstract:
We consider the problem of obtaining appropriate weights for averaging M approximate (misspecified) models for improved estimation of an unknown conditional mean in the face of non-nested model uncertainty in heteroskedastic error settings. We propose a “jackknife model averaging” (JMA) estimator which selects the weights by minimizing a cross-validation criterion. This criterion is quadratic in the weights, so computation is a simple application of quadratic programming. We show that our estimator is asymptotically optimal in the sense of achieving the lowest possible expected squared error. Monte Carlo simulations and an illustrative application show that JMA can achieve significant efficiency gains over existing model selection and averaging methods in the presence of heteroskedasticity.
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (186)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407611002405
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:167:y:2012:i:1:p:38-46
DOI: 10.1016/j.jeconom.2011.06.019
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().