An alternative quasi likelihood approach, Bayesian analysis and data-based inference for model specification
Jae-Young Kim
Journal of Econometrics, 2014, vol. 178, issue P1, 132-145
Abstract:
This paper studies an alternative quasi likelihood approach under possible model misspecification. We derive a filtered likelihood from a given quasi likelihood (QL), called a limited information quasi likelihood (LI-QL), that contains relevant but limited information on the data generation process. Our LI-QL approach, in one hand, extends robustness of the QL approach to inference problems for which the existing approach does not apply. Our study in this paper, on the other hand, builds a bridge between the classical and Bayesian approaches for statistical inference under possible model misspecification. We can establish a large sample correspondence between the classical QL approach and our LI-QL based Bayesian approach. An interesting finding is that the asymptotic distribution of an LI-QL based posterior and that of the corresponding quasi maximum likelihood estimator share the same “sandwich”-type second moment. Based on the LI-QL we can develop inference methods that are useful for practical applications under possible model misspecification. In particular, we can develop the Bayesian counterparts of classical QL methods that carry all the nice features of the latter studied in White (1982). In addition, we can develop a Bayesian method for analyzing model specification based on an LI-QL.
Keywords: Quasi likelihood; Model misspecification; Limited information; Bayesian methods; Sandwich covariance; Large sample correspondence; Model selection (search for similar items in EconPapers)
JEL-codes: C11 C14 C2 C3 C5 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407613001620
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:178:y:2014:i:p1:p:132-145
DOI: 10.1016/j.jeconom.2013.08.012
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().