Robust inference in nonlinear models with mixed identification strength
Xu Cheng
Journal of Econometrics, 2015, vol. 189, issue 1, 207-228
Abstract:
The paper studies inference in regression models composed of nonlinear functions with unknown transformation parameters and loading coefficients that measure the importance of each component. In these models, non-identification and weak identification present in multiple parts of the parameter space, resulting in mixed identification strength for different unknown parameters. This paper proposes robust tests and confidence intervals for sub-vectors and linear functions of the unknown parameters. In particular, the results cover applications where some nuisance parameters are non-identified under the null (Davies (1977, 1987)) and some nuisance parameters are subject to a full range of identification strength. To construct this robust inference procedure, we develop a local limit theory that models mixed identification strength. The asymptotic results involve both inconsistent estimators that depend on a localization parameter and consistent estimators with different rates of convergence. A sequential argument is used to peel the criterion function based on identification strength of the parameters.
Keywords: Mixed rates; Nonlinear regression; Robust inference; Uniformity; Weak identification (search for similar items in EconPapers)
JEL-codes: C12 C15 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407615002055
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:189:y:2015:i:1:p:207-228
DOI: 10.1016/j.jeconom.2015.07.003
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().