Intraday Value-at-Risk: An asymmetric autoregressive conditional duration approach
Shouwei Liu and
Yiu-Kuen Tse
Journal of Econometrics, 2015, vol. 189, issue 2, 437-446
Abstract:
We propose to compute the Intraday Value-at-Risk (IVaR) for stocks using real-time transaction data. Tick-by-tick data filtered by price duration are modeled using a two-state asymmetric autoregressive conditional duration (AACD) model, and the IVaR is calculated using Monte Carlo simulation based on the estimated AACD model. Backtesting results for the New York Stock Exchange (NYSE) show that the IVaR calculated using the AACD method outperforms those using the Dionne et al. (2009) and Giot (2005) methods.
Keywords: High-frequency transaction data; Market microstructure noise; Asymmetric autoregressive conditional duration model; Intraday Value-at-Risk; Backtesting (search for similar items in EconPapers)
JEL-codes: C41 G12 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030440761500113X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:189:y:2015:i:2:p:437-446
DOI: 10.1016/j.jeconom.2015.03.035
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().