Filtered likelihood for point processes
Kay Giesecke and
Gustavo Schwenkler
Journal of Econometrics, 2018, vol. 204, issue 1, 33-53
Abstract:
Point processes are widely used in finance and economics to model the timing of defaults, market transactions, unemployment spells, births, and a range of other events. We develop and analyze likelihood estimators for the parameters of a marked point process and incompletely observed explanatory factors that influence the arrival intensity and mark distribution. We establish an approximation to the likelihood and analyze the convergence and large-sample properties of the associated estimators. Numerical results illustrate the behavior of our estimators.
Keywords: Point processes; Filtering; Efficient parametric inference; Maximum likelihood; Likelihood approximation (search for similar items in EconPapers)
JEL-codes: C13 C32 C41 C58 C63 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407618300058
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:204:y:2018:i:1:p:33-53
DOI: 10.1016/j.jeconom.2017.11.011
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().