Bayesian inference for partially identified smooth convex models
Yuan Liao and
Anna Simoni
Journal of Econometrics, 2019, vol. 211, issue 2, 338-360
Abstract:
This paper proposes novel Bayesian procedures for partially identified models when the identified set is convex with a smooth boundary, whose support function is locally smooth with respect to the data distribution. Using the posterior of the identified set, we construct Bayesian credible sets for the identified set, the partially identified parameter and their scalar transformations. These constructions, based on the support function, benefit from several computationally attractive algorithms when the identified set is convex, and are proved to have valid large sample frequentist coverages. These results are based on a local linear expansion of the support function of the identified set. We provide primitive conditions to verify such an expansion.
Keywords: Partial identification; Bayesian credible sets; Bernstein–von Mises theorem; Support function; Moment inequality models (search for similar items in EconPapers)
JEL-codes: C10 C11 C13 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407619300399
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Bayesian inference for partially identified smooth convex models (2019) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:211:y:2019:i:2:p:338-360
DOI: 10.1016/j.jeconom.2019.03.001
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().