EconPapers    
Economics at your fingertips  
 

Synthetic Learner: Model-free inference on treatments over time

Davide Viviano and Jelena Bradic

Journal of Econometrics, 2023, vol. 234, issue 2, 691-713

Abstract: Understanding the effect of a particular treatment or a policy pertains to many areas of interest, ranging from political economics, marketing to healthcare. In this paper, we develop a non-parametric algorithm for detecting the effects of treatment over time in the context of Synthetic Controls. The method builds on counterfactual predictions from many algorithms without necessarily assuming that the algorithms correctly capture the model. We introduce an inferential procedure to detect treatment effects and show that the testing procedure controls size asymptotically for stationary, beta mixing processes without imposing any restriction on the set of base algorithms under consideration. We discuss consistency guarantees for average treatment effect estimates and derive regret bounds for the proposed methodology. The class of algorithms may include Random Forest, Lasso, or any other machine-learning estimator. Numerical studies and an application illustrate the advantages of the method.

Keywords: Synthetic control; Difference in differences; Causal inference; Random Forests (search for similar items in EconPapers)
JEL-codes: C10 C14 C20 C30 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030440762200152X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:234:y:2023:i:2:p:691-713

DOI: 10.1016/j.jeconom.2022.07.006

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:234:y:2023:i:2:p:691-713