One-way or two-way factor model for matrix sequences?
Yong He,
Xinbing Kong,
Lorenzo Trapani and
Long Yu
Journal of Econometrics, 2023, vol. 235, issue 2, 1981-2004
Abstract:
This paper investigates the issue of determining the dimensions of row and column factor spaces in matrix-valued data. Exploiting the eigen-gap in the spectrum of sample second moment matrices of the data, we propose a family of randomised tests to check whether a one-way or two-way factor structure exists or not. Our tests do not require any arbitrary thresholding on the eigenvalues, and can be applied with (virtually) no restrictions on the relative rate of divergence of the cross-sections to the sample sizes as they pass to infinity. Although tests are based on a randomisation which does not vanish asymptotically, we propose a de-randomised, “strong” (based on the Law of the Iterated Logarithm) decision rule to choose in favour or against the presence of common factors. We use the proposed tests and decision rule in two ways. We further cast our individual tests in a sequential procedure whose output is an estimate of the number of common factors. Our tests are built on two variants of the sample second moment matrix of the data: one based on a row (or column) “flattened” version of the matrix-valued sequence, and one based on a projection-based method. Our simulations show that both procedures work well in large samples and, in small samples, the one based on the projection method delivers a superior performance compared to existing methods in virtually all cases considered.
Keywords: Matrix sequence; Matrix factor model; Principal component analysis; Projection estimation; Randomised tests (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030440762300074X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:235:y:2023:i:2:p:1981-2004
DOI: 10.1016/j.jeconom.2023.02.008
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().