EconPapers    
Economics at your fingertips  
 

Global robust Bayesian analysis in large models

Paul Ho

Journal of Econometrics, 2023, vol. 235, issue 2, 608-642

Abstract: This paper develops a tool for global prior sensitivity analysis in large Bayesian models. Without imposing parametric restrictions, the methodology provides bounds for posterior means or quantiles given any prior close to the original in relative entropy and reveals features of the prior that are important for the posterior statistics of interest. We develop a sequential Monte Carlo algorithm and use approximations to the likelihood and statistic of interest to implement the calculations. The methodology finds that the prior tightness hyperparameters in the hierarchical vector autoregression model from Giannone et al. (2015) are relatively insensitive to their hyperpriors. However, in the New Keynesian model of Smets and Wouters (2007), the error bands for the impulse response of output to a monetary policy shock depend heavily on the prior. The upper bound is especially sensitive, and the prior on wage rigidity plays a particularly important role.

Keywords: Prior sensitivity; Bayesian estimation; VAR; DSGE (search for similar items in EconPapers)
JEL-codes: C11 C32 E00 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407622001257
Full text for ScienceDirect subscribers only

Related works:
Working Paper: Global Robust Bayesian Analysis in Large Models (2020) Downloads
Working Paper: Global Robust Bayesian Analysis in Large Models (2019) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:235:y:2023:i:2:p:608-642

DOI: 10.1016/j.jeconom.2022.06.004

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:econom:v:235:y:2023:i:2:p:608-642