Endogeneity in weakly separable models without monotonicity
Songnian Chen,
Shakeeb Khan and
Xun Tang
Journal of Econometrics, 2024, vol. 238, issue 1
Abstract:
We identify and estimate treatment effects when potential outcomes are weakly separable with a binary endogenous treatment. Vytlacil and Yildiz (2007) proposed an identification strategy that exploits the mean of observed outcomes, but their approach requires a monotonicity condition. In comparison, we exploit full information in the entire outcome distribution, instead of just its mean. As a result, our method does not require monotonicity and is also applicable to general settings with multiple indices. We provide examples where our approach can identify treatment effect parameters of interest whereas existing methods would fail. These include models where potential outcomes depend on multiple unobserved disturbance terms, such as a Roy model, a multinomial choice model, as well as a model with endogenous random coefficients. We establish consistency and asymptotic normality of our estimators.
Keywords: Weak Separability; Treatment Effects; Monotonicity; Endogeneity (search for similar items in EconPapers)
JEL-codes: C14 C31 C35 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030440762300283X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:238:y:2024:i:1:s030440762300283x
DOI: 10.1016/j.jeconom.2023.105567
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).