Tail behavior of ACD models and consequences for likelihood-based estimation
Giuseppe Cavaliere,
Thomas Mikosch,
Anders Rahbek and
Frederik Vilandt
Journal of Econometrics, 2024, vol. 238, issue 2
Abstract:
We establish new results for estimation and inference in financial durations models, where events are observed over a given time span, such as a trading day, or a week. For the classical autoregressive conditional duration (ACD) models by Engle and Russell (1998), we show that the large sample behavior of likelihood estimators is highly sensitive to the tail behavior of the financial durations. In particular, even under stationarity, asymptotic normality breaks down for tail indices smaller than one or, equivalently, when the clustering behavior of the observed events is such that the unconditional distribution of the durations has no finite mean. Instead, we find that estimators are mixed Gaussian and have non-standard rates of convergence. The results are based on exploiting the crucial fact that for duration data the number of observations within any given time span is random. Our results apply to general econometric models where the number of observed events is random.
Keywords: Financial durations; Autoregressive conditional duration (ACD); Tail index; Quasi maximum likelihood; Mixed normality (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407623003299
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:238:y:2024:i:2:s0304407623003299
DOI: 10.1016/j.jeconom.2023.105613
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().