Testing underidentification in linear models, with applications to dynamic panel and asset pricing models
Frank Windmeijer
Journal of Econometrics, 2024, vol. 240, issue 2
Abstract:
This paper develops the links between overidentification tests, underidentification tests, score tests and the Cragg and Donald (1993, 1997) and Kleibergen and Paap (2006) rank tests in linear instrumental variable (IV) models. For the structural linear model y=Xβ+u, with the endogenous explanatory variables partitioned as X=x1X2, this general framework shows that standard underidentification tests are tests for overidentification in an auxiliary linear model, x1=X2δ+ɛ, estimated by IV estimation methods using the same instruments as for the original model. This simple structure makes it possible to establish valid robust underidentification tests for linear IV models where these have not been proposed or used before, like clustered dynamic panel data models estimated by GMM. The framework also applies to tests for the rank of general parameter matrices. Invariant rank tests are based on the LIML or continuously updated GMM estimators of both structural and first-stage parameters. This insight leads to the proposal of new two-step invariant asymptotically efficient GMM estimators, and a new iterated GMM estimator that, if it converges, converges to the continuously updated GMM estimator.
Keywords: Overidentification; Underidentification; Rank tests; Dynamic panel data models; Asset pricing models (search for similar items in EconPapers)
JEL-codes: C12 C13 C23 C26 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030440762100097X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:240:y:2024:i:2:s030440762100097x
DOI: 10.1016/j.jeconom.2021.03.007
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().