EconPapers    
Economics at your fingertips  
 

Spatially varying sparsity in dynamic regression models

Guanyu Hu

Econometrics and Statistics, 2021, vol. 17, issue C, 23-34

Abstract: Motivated by the problem of variable selection in spatially varying coefficients models for spatial econometrics data, a Bayesian spatially dynamic selection model based on spatial normal-gamma process (SNGP) is proposed, which pursues spatial varying sparsity in dynamic regression models. Theoretical properties of SNGP are discussed. Posterior samples are obtained by nimble, a powerful R package for Bayesian inference. A new tuning-free variable selection based on K-groups clustering is proposed for discriminating the signal and the noise. Simulation studies show that the proposed method has both good estimation performance and selection performance. Finally, the new method is applied to analyzing a county level income data of Louisiana.

Keywords: Bayesian shrinkage; Spatial econometrics; Spatial normal-Gamma Process; Variable selection (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306220300861
Full text for ScienceDirect subscribers only. Contains open access articles

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:17:y:2021:i:c:p:23-34

DOI: 10.1016/j.ecosta.2020.08.002

Access Statistics for this article

Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi

More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecosta:v:17:y:2021:i:c:p:23-34