Spatially varying sparsity in dynamic regression models
Guanyu Hu
Econometrics and Statistics, 2021, vol. 17, issue C, 23-34
Abstract:
Motivated by the problem of variable selection in spatially varying coefficients models for spatial econometrics data, a Bayesian spatially dynamic selection model based on spatial normal-gamma process (SNGP) is proposed, which pursues spatial varying sparsity in dynamic regression models. Theoretical properties of SNGP are discussed. Posterior samples are obtained by nimble, a powerful R package for Bayesian inference. A new tuning-free variable selection based on K-groups clustering is proposed for discriminating the signal and the noise. Simulation studies show that the proposed method has both good estimation performance and selection performance. Finally, the new method is applied to analyzing a county level income data of Louisiana.
Keywords: Bayesian shrinkage; Spatial econometrics; Spatial normal-Gamma Process; Variable selection (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306220300861
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:17:y:2021:i:c:p:23-34
DOI: 10.1016/j.ecosta.2020.08.002
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().