EconPapers    
Economics at your fingertips  
 

On the consistency of bootstrap methods in separable Hilbert spaces

Gil González-Rodríguez and Ana Colubi

Econometrics and Statistics, 2017, vol. 1, issue C, 118-127

Abstract: Hilbert spaces are frequently used in statistics as a framework to deal with general random elements, specially with functional-valued random variables. The scarcity of common parametric distribution models in this context makes it important to develop non-parametric techniques, and among them, bootstrap has already proved to be specially valuable. The aim is to establish a methodology to derive consistency results for some usual bootstrap methods when working in separable Hilbert spaces. Naive bootstrap, bootstrap with arbitrary sample size, wild bootstrap, and more generally, weighted bootstrap methods, including double bootstrap and bootstrap generated by deterministic weights with the particular case of delete −h jackknife, will be proved to be consistent by applying the proposed methodology. The main results concern the bootstrapped sample mean, however since many usual statistics can be written in terms of means by considering suitable spaces, the applicability is notable. An illustration to show how to employ the approach in the context of a functional regression problem is included.

Keywords: Bootstrap methods; Consistency; Hilbert spaces; Functional data; Independent random elements; Functional sample mean; Functional regression models (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306216300259
Full text for ScienceDirect subscribers only. Contains open access articles

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:1:y:2017:i:c:p:118-127

DOI: 10.1016/j.ecosta.2016.11.001

Access Statistics for this article

Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi

More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecosta:v:1:y:2017:i:c:p:118-127