Modelling Multiple Regimes in Economic Growth by Mixtures of Generalised Nonlinear Models
Sanela Omerovic,
Herwig Friedl and
Bettina Grün
Econometrics and Statistics, 2022, vol. 22, issue C, 124-135
Abstract:
The new model class of mixtures of generalised nonlinear models (GNMs) is introduced. The model is specified, identifiability issues discussed, the fitting in a maximum likelihood framework using the expectation-maximisation (EM) algorithm outlined and an appropriate computational implementation introduced. The new model class is applied to capture cross-country heterogeneity when considering the augmented Solow model including human capital accumulation as underlying model structure. The inherent heterogeneity is attributed to multiple regimes being present within the selected country data set. The results highlight that country-specific differences lead to distinct components. Countries belonging to the same component exhibit convergence to a homogeneous steady state. The components differ in the initial technological endowment and the contribution of the economic variables to economic growth.
Keywords: Finite mixture model; Generalised nonlinear model; Solow model; EM algorithm (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306221000307
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:22:y:2022:i:c:p:124-135
DOI: 10.1016/j.ecosta.2021.02.008
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().