EconPapers    
Economics at your fingertips  
 

Improved Inference of Gaussian Mixture Copula Model for Clustering and Reproducibility Analysis using Automatic Differentiation

Siva Rajesh Kasa and Vaibhav Rajan

Econometrics and Statistics, 2022, vol. 22, issue C, 67-97

Abstract: Copulas provide a modular parameterization of multivariate distributions that decouples the modeling of marginals from the dependencies between them. The Gaussian Mixture Copula Model (GMCM) is a highly flexible copula that can model many kinds of multi-modal dependencies, as well as asymmetric and tail dependencies. They have been effectively used in clustering non-Gaussian data and in Reproducibility Analysis, a meta-analysis method designed to verify the reliability and consistency of multiple high-throughput genomic experiments. Parameter estimation for GMCM is challenging due to its intractable likelihood. The best previous methods maximize a proxy-likelihood through a Pseudo Expectation Maximization (PEM) algorithm. No guarantees of convergence or convergence to the correct parameters are provided by those methods. Using Automatic Differentiation (AD), a method, called AD-GMCM, is developed that can maximize the exact GMCM likelihood. Simulation studies and experiments on real data show that AD-GMCM finds more accurate parameter estimates than PEM and yields better performance in clustering and reproducibility analysis. The advantages of an AD-based approach to address problems related to monotonic increase of likelihood and parameter identifiability in GMCM are discussed. The two well-known cases of degeneracy of maximum likelihood in GMM that can lead to spurious clustering solutions are analyzed for GMCM as well. The analysis reveals that, unlike GMM, GMCM is not affected in one of the cases.

Keywords: Gaussian Mixture Copula Model; Reproducibility Analysis; Clustering; Automatic Differentiation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306221001040
Full text for ScienceDirect subscribers only. Contains open access articles

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:22:y:2022:i:c:p:67-97

DOI: 10.1016/j.ecosta.2021.08.010

Access Statistics for this article

Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi

More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecosta:v:22:y:2022:i:c:p:67-97