EconPapers    
Economics at your fingertips  
 

Robust normal mixtures for financial portfolio allocation

Marco Gambacciani and Marc S. Paolella

Econometrics and Statistics, 2017, vol. 3, issue C, 91-111

Abstract: A new approach for multivariate modelling and prediction of asset returns is proposed. It is based on a two-component normal mixture, estimated using a fast new variation of the minimum covariance determinant (MCD) method made suitable for time series. It outperforms the (shrinkage-augmented) MLE in terms of out-of-sample density forecasts and portfolio performance. In addition to the usual stylized facts of skewness and leptokurtosis, the model also accommodates leverage and contagion effects, but is i.i.d., and thus does not embody, for example, a GARCH-type structure. Owing to analytic tractability of the moments and the expected shortfall, portfolio optimization is straightforward, and, for daily equity returns data, is shown to substantially outperform the equally weighted and classical long-only Markowitz framework, as well as DCC-GARCH (despite not using any kind of GARCH-type filter).

Keywords: Dynamic conditional correlation; Density forecasting; Minimum covariance determinant; Portfolio optimization; Robust statistics (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306217300126
Full text for ScienceDirect subscribers only. Contains open access articles

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:3:y:2017:i:c:p:91-111

DOI: 10.1016/j.ecosta.2017.02.003

Access Statistics for this article

Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi

More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecosta:v:3:y:2017:i:c:p:91-111