Robust normal mixtures for financial portfolio allocation
Marco Gambacciani and
Marc S. Paolella
Econometrics and Statistics, 2017, vol. 3, issue C, 91-111
Abstract:
A new approach for multivariate modelling and prediction of asset returns is proposed. It is based on a two-component normal mixture, estimated using a fast new variation of the minimum covariance determinant (MCD) method made suitable for time series. It outperforms the (shrinkage-augmented) MLE in terms of out-of-sample density forecasts and portfolio performance. In addition to the usual stylized facts of skewness and leptokurtosis, the model also accommodates leverage and contagion effects, but is i.i.d., and thus does not embody, for example, a GARCH-type structure. Owing to analytic tractability of the moments and the expected shortfall, portfolio optimization is straightforward, and, for daily equity returns data, is shown to substantially outperform the equally weighted and classical long-only Markowitz framework, as well as DCC-GARCH (despite not using any kind of GARCH-type filter).
Keywords: Dynamic conditional correlation; Density forecasting; Minimum covariance determinant; Portfolio optimization; Robust statistics (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306217300126
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:3:y:2017:i:c:p:91-111
DOI: 10.1016/j.ecosta.2017.02.003
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().