Supervised dimension reduction for multivariate time series
M. Matilainen,
C. Croux,
K. Nordhausen and
H. Oja
Econometrics and Statistics, 2017, vol. 4, issue C, 57-69
Abstract:
A regression model where the response as well as the explaining variables are time series is considered. A general model which allows supervised dimension reduction in this context is suggested without considering the form of dependence. The method for this purpose combines ideas from sliced inverse regression (SIR) and blind source separation methods to obtain linear combinations of the explaining time series which are ordered according to their relevance with respect to the response. The method gives also an indication of which lags of the linear combinations are of importance. The method is demonstrated using simulations and a real data example.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306217300345
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:4:y:2017:i:c:p:57-69
DOI: 10.1016/j.ecosta.2017.04.002
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().