EconPapers    
Economics at your fingertips  
 

Information theoretic-based sampling of observations

Sander van Cranenburgh and Michiel Bliemer

Journal of choice modelling, 2019, vol. 31, issue C, 181-197

Abstract: Due to the surge in the amount of data that are being collected, analysts are increasingly faced with very large data sets. Estimation of sophisticated discrete choice models (such as Mixed Logit models) based on these typically large data sets can be computationally burdensome, or even infeasible. Hitherto, analysts tried to overcome these computational burdens by reverting to less computationally demanding choice models or by taking advantage of the increase in computational resources. In this paper we take a different approach: we develop a new method called Sampling of Observations (SoO) which scales down the size of the choice data set, prior to the estimation. More specifically, based on information-theoretic principles this method extracts a subset of observations from the data which is much smaller in volume than the original data set, yet produces statistically nearly identical results. We show that this method can be used to estimate sophisticated discrete choice models based on data sets that were originally too large to conduct sophisticated choice analysis.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1755534517301124
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:eejocm:v:31:y:2019:i:c:p:181-197

DOI: 10.1016/j.jocm.2018.02.003

Access Statistics for this article

Journal of choice modelling is currently edited by S. Hess and J.M. Rose

More articles in Journal of choice modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:eejocm:v:31:y:2019:i:c:p:181-197